Apache Kafka: 15개의 글
kafka 모니터링 도구 Kafka Offset Monitor (오픈소스 기반의 Web UI) 홈페이지 실행: $ java -cp KafkaOffsetMonitor-assembly-0.2.1.jar com.quantifind.kafka.offsetapp.OffsetGetterWeb --zk zk-server1,zk-server2 --port 8080 --refresh 10.seconds --retain 2.days 모니터링: http://설치호스트IP:설치포트 모니터링 주요항목 Consumer 위주의 모니터링 topic 에 대한 모니터링 zookeeper 의 클러스터링 한계(사견) 시스템 항목에 대한 모니터링 항목의 부재 Producer 대응의 부재 active consumer list 호출 방식을 찾지..
Apache Kafka - Kafka(카프카)란 ? 분산 메시징 플랫폼 - 1 이전 포스팅에서 간단히 카프카란 무엇이며 카프카의 요소들에 대해 다루어보았다. 이번 포스팅에는 이전에 소개했던 요소중 카프카 프로듀서에 대해 다루어볼 것이다. 카프카 프로듀서란 카프카 클러스터에 대해 데이터를 pub, 기록하는 애플리케이션이다. 카프카 프로듀서의 내부 구조 우리는 카프카 프로듀서를 사용하기 위해 추상화된 API를 사용한다. 하지만 우리가 사용하는 API는 내부적으로 많은 절차에 따라 행동을 한다. 이러한 프로듀서가 책임지는 역할들은 아래와 같다. 카프카 브로커 URL 부트스트랩 : 카프카 프로듀서는 카프카 클러스터에 대한 메타데이터를 가져오기 위해 최소 하나 이상의 브로커에 연결한다. 프로듀서가 연결하길 원하는..
이전 포스팅들에서 이미 카프카란 무엇이고, 카프카 프로듀서부터 컨슈머, 스트리밍까지 다루어보았다. 하지만 이번 포스팅을 시작으로 조금더 내용을 다듬고 정리된 상태의 풀세트의 카프카 포스팅을 시작할 것이다. 카프카 시스템의 목표 메시지 프로듀서와 컨슈머 사이의 느슨한 연결 다양한 형태의 데이터 사용 시나리오와 장애 처리 지원을 위한 메시지 데이터 유지 빠른 처리 시간을 지원하는 구성 요소로 시스템의 전반적인 처리량을 최대화 이진 데이터 형식을 사용해서 다양한 데이터 형식과 유형을 관리 기존의 클러스터 구성에 영향을 주지 않고 일정한 서버의 확장성을 지원 카프카의 구조 카프카 토픽에서 모든 메시지는 바이트의 배열로 표현되며, 카프카 프로듀서는 카프카 토픽에 메시지를 저장하는 애플리케이션이다. 이렇게 프로듀서..
Kafka - Kafka Stream API(카프카 스트림즈) - 2 이전 카프카 스트림즈 포스팅에서는 간단하게 카프카 스트림즈 API를 다루어보았습니다. 이번 2번째 카프카 스트림즈 포스팅은 조금더 깊게 카프카 스트림즈에 대해 알아보려고 합니다. Kafka Streams는 Kafka 프로듀서 및 컨슈머를 이용하여 들어오는 메시지를 즉각적으로 가공하여 또 다른 토픽으로 메시지를 내보낼 수 있습니다. 이러한 카프카 스트림즈를 사용하는 기업들을 소개하자면 New York Times는 카프카와 카프카 스트림즈를 이용하여 독자들을 위한 실시간 컨첸츠를 저장하고 배포합니다.그리고 라인 같은 경우는 서비스끼리 통신하기 위한 중앙 데이터 허브로 카프카를 사용합니다. 그리고 카프카 스트림즈를 이용하여 토픽을 데이터를 ..
kafka is a distributed streaming platform 이번 포스팅은 Spring Cloud Stream 환경에서의 kafka Streams API입니다. 물론 이전 포스팅들에서 자바코드로 카프카 스트림즈를 다루어봤지만 이번에는 스프링 클라우드 스트림즈 환경에서 진행합니다. 카프카 스트림즈에 대한 설명은 이전 포스팅에서 진행하였기에 개념적인 설명은 하지 않고 코드레벨로 다루어보겠습니다. 혹시나 카프카 스트림즈를 모르시는 분이 있으시다면 아래 링크를 참조하시길 바랍니다. 지금부터 진행될 예제 및 설명은 모두 Spring Cloud Stream Reference를 참조하였습니다. 번역 중 오역이 있을 수 있습니다. ▶︎▶︎▶︎Kafka - Kafka Streams API(카프카 스트림즈)..
Kafka - Spring cloud stream kafka(스프링 클라우드 스트림 카프카) 이전 포스팅까지는 카프카의 아키텍쳐, 클러스터 구성방법, 자바로 이용하는 프로듀서,컨슈머 등의 글을 작성하였다. 이번 포스팅은 이전까지 작성된 지식을 바탕으로 메시징 시스템을 추상화한 구현체인 Spring Cloud Stream을 이용하여 카프카를 사용하는 글을 작성하려고 한다. 혹시라도 카프카에 대해 아직 잘모르는 사람들이 이 글을 본다면 이전 포스팅을 한번 참고하고 와도 좋을 것같다.(이번에 작성하는 포스팅은 Spring Cloud stream 2.0 레퍼런스 기준으로 작성하였다.) 그리고 이번 포스팅에서 진행하는 모든 예제는 카프카를 미들웨어로 사용하는 예제이고, 카프카는 클러스터를 구성하였다. ▶︎▶︎▶︎..
Kafka - Kafka Streams API(카프카 스트림즈) 카프카는 대규모 메시지를 저장하고 빠르게 처리하기 위해 만들어진 제품이다. 초기 사용 목적과는 다른 뛰어난 성능에 일련의 연속된 메시지인 스트림을 처리하는 데도 사용이 되기 시작했다. 이러한 스트림을 카프카는 Kafka Streams API를 통해 제공한다. 설명하기 앞서 우선 스트림 프로세싱과 배치 프로세싱의 차이점이란 무엇일까? 스트림 프로세싱(Stream Processing)은 데이터들이 지속적으로 유입되고 나가는 과정에서 이 데이터에 대한 일련의 처리 혹은 분석을 수행하는 것을 의미한다. 즉, 스트림 프로세싱은 실시간 분석(Real Time Analysis)이라고 불리기도 한다. 스트림 프로세싱과는 대비되는 개념으로 배치(Batch)..
Kafka - Kafka Consumer(카프카 컨슈머) Java&CLI 이전 포스팅에서 kafka producer를 java 소스기반으로 예제를 짜보았습니다. 이번 포스팅은 kafka consumer를 java 소스로 다루어보려고 합니다. Kafka Producer(카프카 프로듀서)가 메시지를 생산해서 카프카의 토픽으로 메시지를 보내면 그 토픽의 메시지를 가져와서 소비(consume)하는 역할을 하는 애플리케이션, 서버 등을 지칭하여 컨슈머라고 한다. 컨슈머의 주요 기능은 특정 파티션을 관리하고 있는 파티션 리더에게 메시지를 가져오기 요청을 하는 것이다. 각 요청은 컨슈머가 메시지 오프셋을 명시하고 그 위치로부터 메시지를 수신한다. 그래서 컨슈머는 가져올 메시지의 위치를 조정할 수 있고, 필요하다면 이..
카프카 프로듀서란 메시지를 생산(produce)해서 카프카의 토픽으로 메시지를 보내는 역할을 하는 애플리케이션, 서버 등을 모두 프로듀서라고 부른다. 프로듀서의 주요 기능은 각각의 메시지를 토픽 파티션에 매핑하고 파티션의 리더에 요청을 보내는 것이다. 키 값을 정해 해당 키를 가진 모든 메시지를 동일한 파티션으로 전송할 수 있다. 만약 키 값을 입력하지 않으면, 파티션은 라운드 로빈(round-robin) 방식으로 파티션에 균등하게 분배된다. 이후의 모든 예제는 이전 포스팅에서 구성한 카프카 클러스터링 환경에서 진행하였습니다. 동일한 환경 구성을 구축하고 예제를 진행하시려면 이전 포스팅을 참조하시길 부탁드립니다. ▶︎▶︎▶︎Kafka - Kafka(카프카) cluster(클러스터) 구성 및 간단한 CLI..
▶︎▶︎▶︎카프카란? 이전 포스팅에서는 메시징 시스템은 무엇이고, 카프카는 무엇이며 그리고 카프카의 특징과 다른 메시지 서버와의 차이점에 대한 포스티이었습니다. 이번 포스팅은 간단하게 카프카3대를 클러스터링 구성을 하여 서버를 띄우고 CLI를 이용하여 간단히 카프카를 사용해보려고 합니다. 카프카는 중앙에서 많은 서비스 시스템의 데이터를 받아서 다른 시스템으로 받아주는 역할을 하는 메시지 시스템으로 MSA에서는 없어선 안되는 존재가 되었습니다. 그렇다면 이렇게 중요한 카프카를 한대만 띄워서 프로덕트 환경에서 운영한다는 것은 과연 안전한 생각일까요? 아닙니다. 여러대를 클러스터링 구성하여 고가용성을 높혀야 운영환경에서도 안전하고 신뢰성있는 메시지 시스템 구성이 될것입니다. 위의 그림은 카프카를 여러대 클러스..