optimizer: 1개의 글
optimizer 원리
Gradient Descent 뉴럴 네트워크의 loss function의 현 weight의 기울기(gradient)를 구하고 loss를 줄이는 방향으로 업데이트(조정)해 나가는 방법을 통해서 뉴럴 네트워크를 학습하였습니다. loss(cost) function이라는게 나왔군요. 뉴럴 네트워크에서 loss function은 무엇일까요? 간단히 설명하면 지금 현재의 가중치에서 "틀린정도"를 알려주는 함수이죠. 즉, 현재 네트워크의 weight에서 내가 가진 데이터를 다 넣어주면 전체 에러가 계산 되겠죠? 거기서 미분을 하면 에러를 줄이는 방향을 알 수 있습니다. 바로 위의 그림과 같이 말이죠. 그 방향으로 정해진 스텝량(learning rate)을 곱해서 weight을 이동시킵니다. 이걸 계속 반복해서 학습을..
AI, 머신러닝/머신러닝
2021. 5. 7. 03:10